Descriptive Statistics – Measures of Spread

Research question type: Most

What kind of variables: Nominal, ordinal and interval/scale

Common Applications: Most quantitative studies

Descriptive statistics are a way of summarising your data into a few values, often for comparative purposes. Commonly they are presented in tables, although appropriate charts are also used. They include measures of middle values (or central tendency), and measures of spread (or dispersion) of your data.

The following is a rough guide to appropriate measures for level of data:

<table>
<thead>
<tr>
<th>Data level</th>
<th>Middle value (central tendency)</th>
<th>Dispersion (spread)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>Ordinal</td>
<td>Mode, median</td>
<td>Range, interquartile range (IQR)</td>
</tr>
<tr>
<td>Interval/scale</td>
<td>Median, mean</td>
<td>Variance, standard deviation</td>
</tr>
</tbody>
</table>

Range

The range is defined as the difference between the maximum and the minimum values of a set of data.

Example

Find the range for: 2, 6, 3, 9, 5, 6, 2, 6.

The maximum value of the data is 9, and the minimum value is 2. Hence the range is 9 - 2 = 7.

Interquartile range (IQR)

Quartiles split a dataset into four quarters when the values are written in ascending order.

The lower quartile is 25% of the way through a dataset. This is the \(\left(\frac{n+1}{4}\right)\)th value, where \(n\) is the number of data values.

(Note: Quarter values are found by starting with the lower value and adding either \(\frac{1}{4}\) or \(\frac{3}{4}\) of the difference. For example, the \(2\frac{3}{4}\)th value is the \(2\)nd value plus \(\frac{3}{4}\) of the \(3\)rd value minus the \(2\)nd.)
The median is the middle quartile. This is the \(\left(\frac{n+1}{2}\right)^{th}\) value.

The **upper quartile** is 75% of the way through the data, or the \(3 \left(\frac{n+1}{4}\right)^{th}\) value.

The **interquartile range** (IQR) is then the difference between the upper and lower quartiles.

Examples

Find the IQR of the following:

a) 11, 4, 9, 7, 10, 5, 6

Ordering the data gives 4, 5, 6, 7, 9, 10, 11.

There are 7 values so the \(\left(\frac{n+1}{4}\right)^{th}\) value is the second value which is 5.

The \(3 \left(\frac{n+1}{4}\right)^{th}\) value is the 6\(^{th}\) value, which is 10.

Hence the IQR is 10 – 5 = 5.

b) 1, 3, 0.5, 0.6, 2, 2.5, 3.1, 2.9

Ordering the data gives 0.5, 0.6, 1, 2, 2.5, 2.9, 3, 3.1.

There are 8 values so the lower quartile is the \(\left(\frac{n+1}{4}\right)^{th}\) value, which is the \(2\left(\frac{1}{4}\right)^{th}\) value.

This is 2\(^{nd}\) value + \(\frac{1}{4}\) of \((3\(^{rd}\) value – 2\(^{nd}\) value) = 0.6 + \(\frac{1}{4}\times(1 – 0.6) = 0.6 + 0.1 = 0.7\).

The upper quartile is the \(3 \left(\frac{n+1}{4}\right)^{th}\) value, which is the \(6\left(\frac{3}{4}\right)^{th}\) value.

This is 6\(^{th}\) value + \(\frac{3}{4}\) of \((7\(^{th}\) value - 6\(^{th}\) value) = 2.9 + \(\frac{3}{4}\times(3 – 2.9) = 2.9 + 0.075 = 2.975\).

Hence, the IQR is 2.975 - 0.7 = 2.275.

See http://www.mathsisfun.com/data/quartiles.html for more detail and an introduction to box and whisker plots, which are useful charts to display these values.

Variance and standard deviation

The range and IQR are quick and easy to calculate measures of spread or variation of the values in a data set. The range is influenced by extreme values, which the IQR compensates for by using just the middle 50% of the data set. However, for data measured at the scale/interval level, a measure using all the data values is more desirable.

The **variance** is such a value. We often use the related measure, its square-root, called the **standard deviation**.

Broadly speaking, the standard deviation is the average of the distances of each value in a data set from the mean of the data. Hence, the smaller the standard deviation, the more closely clustered the values are around the mean; the larger the standard deviation, the more spread-out the values are around the mean.

The variance and standard deviation of a set of numbers are defined by:

\[
\text{Variance} = \text{StandardDeviation}^2 = \frac{\Sigma(x-\bar{x})^2}{n-1}
\]
We then take the square-root to find the standard deviation.
Fortunately, the standard deviation can be easily obtained using Excel or SPSS.

Example

Find the standard deviation of: 6, 8, 11, 5, 2, 9, 8.

The mean of these numbers is \(\frac{6+8+11+5+2+9+8}{7} = \frac{49}{7} = 7 \)

Variance = \(\frac{\sum(x - \overline{x})^2}{n-1} \)

\(\frac{(-1)^2 + (1)^2 + (4)^2 + (-2)^2 + (-5)^2 + (2)^2 + (1)^2}{6} \)

\(= \frac{1+1+16+4+25+4+1}{6} = \frac{52}{6} = 8.67 \) to 2 decimal places.

Hence the population standard deviation = \(\sqrt{8.67} \approx 2.94 \) to 2 d.p.

Steps in SPSS

Data entry

Open SPSS, select Type in Data, select the Data View tab at the bottom of the screen and enter the values into the first column of the Data Editor window as shown on the right.

Select the Variable View tab at the bottom of the screen to name the variable Values, and set the number of decimal places to zero.

Find the range and standard deviation

- Choose Analyze – Descriptive Statistics – Frequencies... from the menu
- Select the Variable Values, and use \(\text{ } \) to move it to the Variable(s) list
- Click on the Statistics button
- Check the boxes next to Std. Deviation, Range (and Minimum, Maximum and Variance if desired) and Quartiles.
- Click Continue and OK

The results are given in the Output window or SPSS Statistics Viewer window. The range is 9 and the standard deviation is
2.94 as we already calculated.

The IQR is not given directly, but can be calculated by asking for the quartiles and taking the difference between them. In the above example, the IQR = 75 Percentile – 25 Percentile = 8.75 – 5.25 = 3.

Note: The Analyze – Descriptive Statistics – Explore… option also provides most of the descriptive statistics that you will need.

Steps in Excel

When the data is placed in cells A1 to A7, use the formula =STDEV.S(A1:A7).

The range and IQR can be calculated from the MAX, MIN and QUARTILE.EXC functions.

The range is =MAX(A1:A7)-MIN(A1:A7)

The IQR is =QUARTILE.EXC(A1:A7,3)-QUARTILE.EXC(A1:A7,1)

Choice between measures of spread

The range is a rough measure of spread as it is only based on the extreme data values. The standard deviation is a good measure of spread when a data set is approximately normally distributed. For irregular distributions use the inter quartile range.

Exercise

Find the range, IQR and sample standard deviation of the following datasets correct to 2 decimal places:

1. 10, 16, 12, 15, 9, 16, 10, 17, 12, 15
2. 74, 72, 83, 96, 64, 79, 88, 69
3. £326, £438, £375, £366, £419, £424

Answers

1. 8, 6 and 2.94
2. 32, 17 and 10.55
3. £112, £71.50 and £42.87